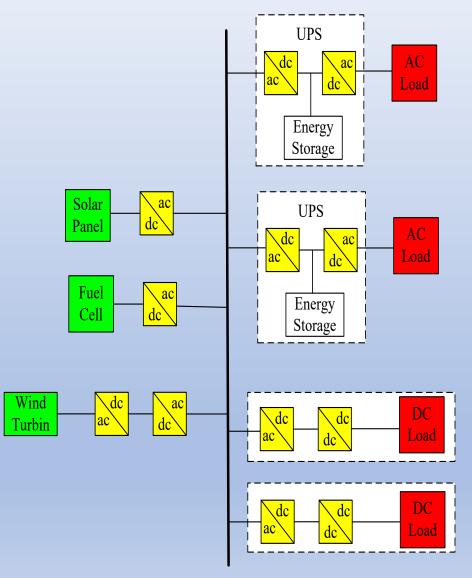
Central Valley Rural Energy Systems Workshop Dec 9, 2025

DC Distribution System

Dr. Eric Cheng
Electrical Engineering
UC Merced

ericcheng@ucmerced.edu

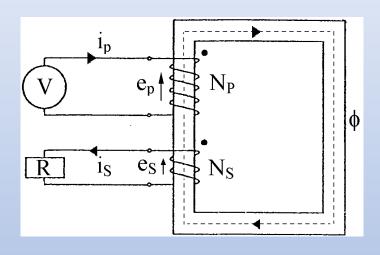
Existing AC Power Distribution

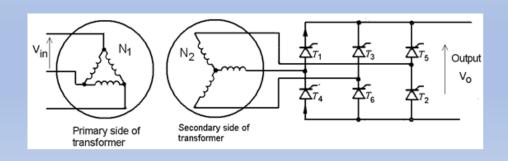

AC distribution has been used for around 200 years, we need to change

Advantages of AC Distribution

- Alternating current power transmission or distribution networks is commonly used.
- Well developed, matured technology.
- Supporting Devices such as UPS, DVR, APF are well developed

Why AC distribution system served us well?

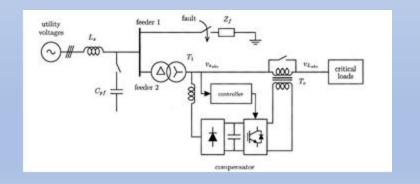

- A. Voltage Transformation
- B. Circuit Breaker Protection
- C. Established Voltage Stability techniques

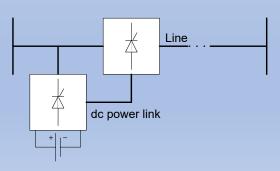


Easy Voltage Transformation

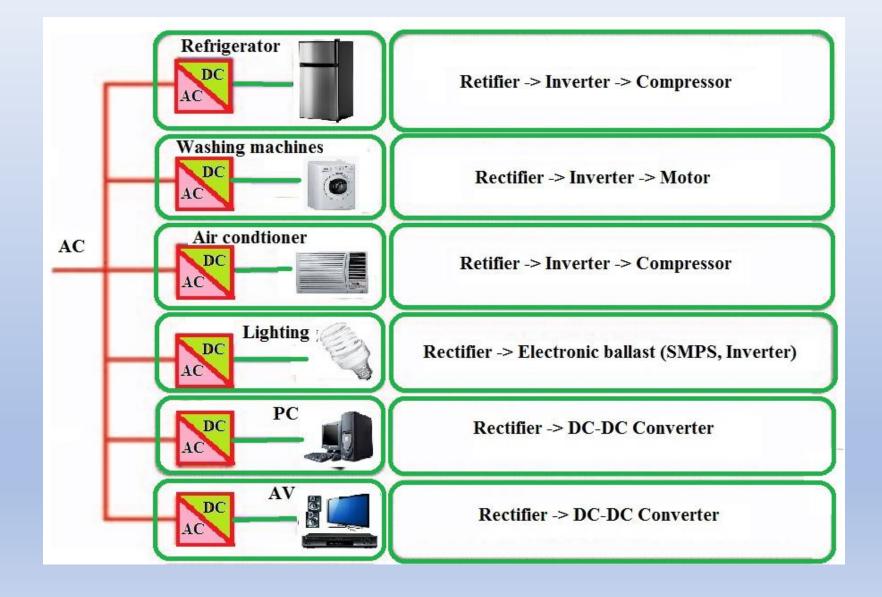
- The greatest benefit to ac systems is the ease with ac voltage conversion
- Transformer techniques have been used for good voltage conversion under various load conditions.
- High efficiency
- Voltage control from AC-AC is well established such as Transformer rectifier unit (TRU)

Well developed protection system

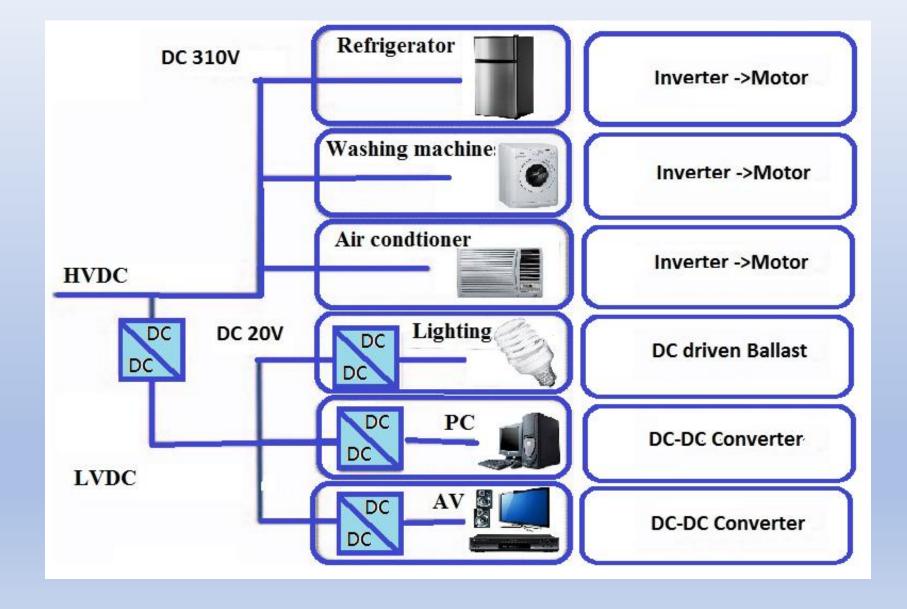

Mature Circuit Breaker Protection


- Circuit protection is mature for ac distribution systems than for dc systems
- AC circuit protection schemes benefit from periodic zero voltage crossings,
- Extinguish a fault current arc.

Controlled Voltage Stability


- The advantage of an ac system is that the stable voltage can be controlled independently from real power through the management of reactive power.
- Voltage dip restorer can also be used for stability.
- Active power supply/filter could inject reactive power

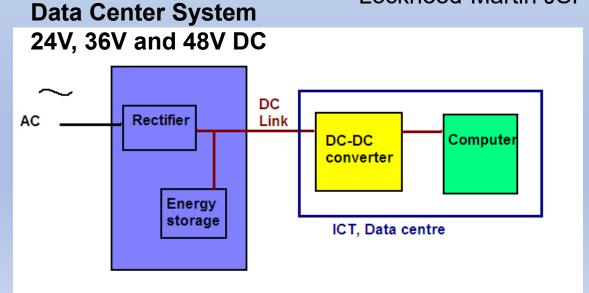
AC Home with 120V and 60Hz (Existing system)



DC Distribution

A much more modern method of power distribution to meet all the present systems

DC Home with 310V + 20V



Example of existing DC Mircogrid

Lockheed-Martin JSF X-35A/B/C

- 1000V DC circuit
- A significant step forward in e
- 20 percent fuel efficiency imp

This is the ABB Onboard DC Grid.

http://www.abb.com/cawp/seitp202/3415983275230248 c1257b64005080ef.aspx

DC in Various Cities

NTT East Saitama Shin-toshin Building

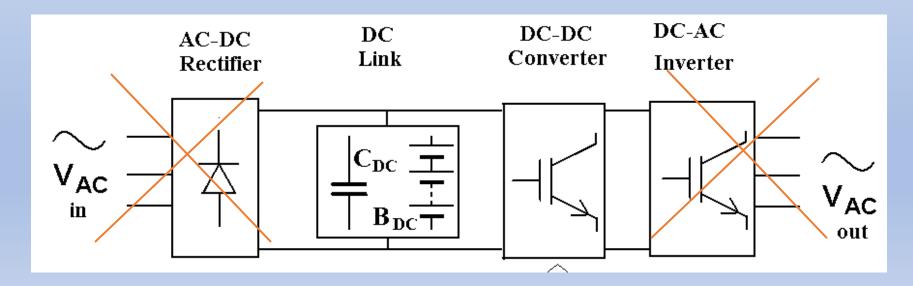
48VDC

250V DC that Coexist with AC. A feeder head, rectifier, and output smoother atop a pole in San Francisco's South of Market

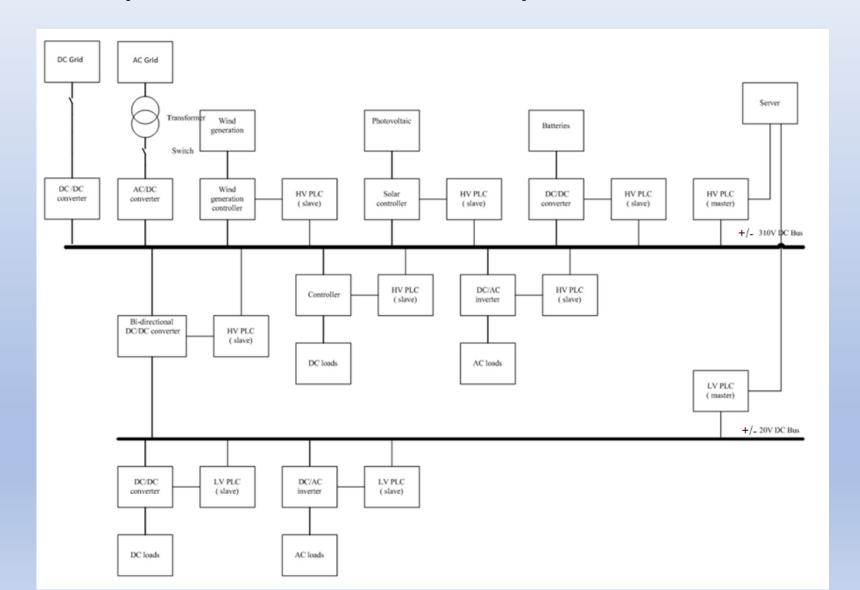
http://spectrum.ieee.org/energy/t he-smarter-grid/san-franciscossecret-dc-grid

DC 380V University Campus in Aichi, Japan

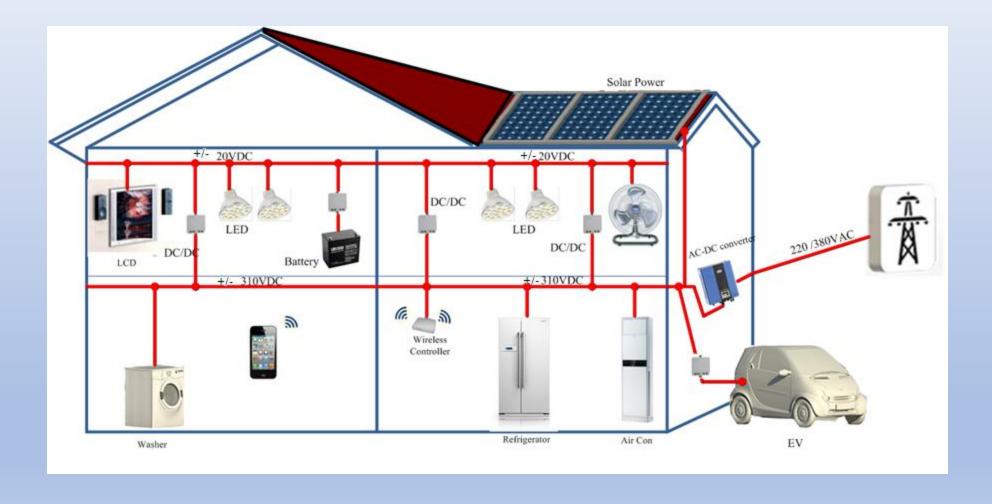
DC 380V, Chung Cheng University, Taiwan



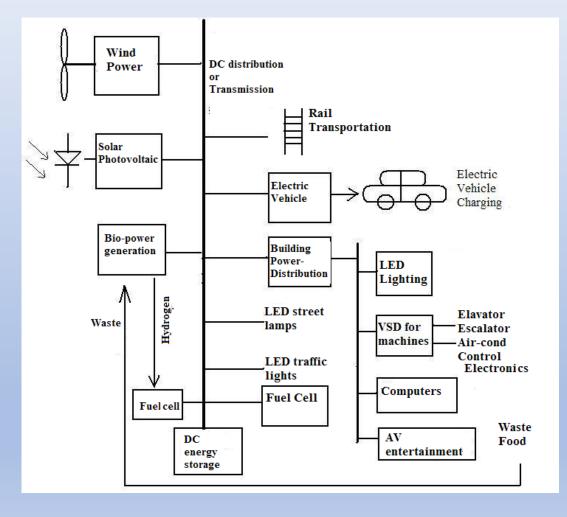
DC 380V, Chung Cheng University, Taiwan


General concept of DC Distribution

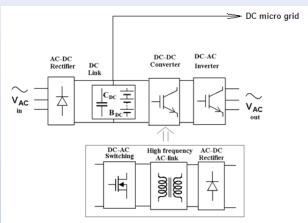
- The DC distribution system is an alternative method for delivering power.
- The method has been proved to have advantages over the conventional AC distribution in terms of energy saving, operation and cost.
- In the past, AC is used for most of the transmission and distribution system. Now DC can be made using power electronics
- The distributed renewable energy source: It is possible to skip one or two stage conversion and to use DC-DC conversion only by using DC for distribution systems.

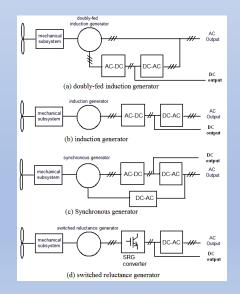


DC distribution system with double-layer structure

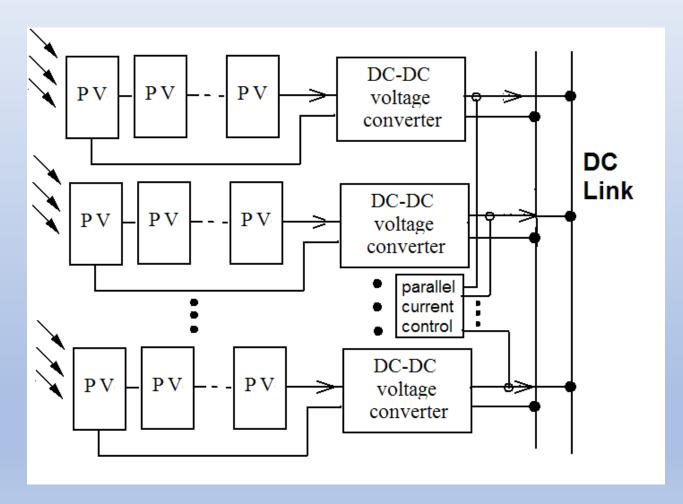


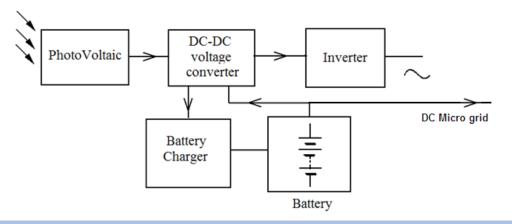
THE TY OF CAN FOR A STATE OF THE PARTY OF TH


The DC Smart Home



Smart DC City




Research Area

- High frequency DC/DC power conversion
- DC safety
- DC energy storage
- DC standard
- DC to AC actuation
- DC actuation
- Distributed DC power generation
- DC load

Parallel sharing of PV systems

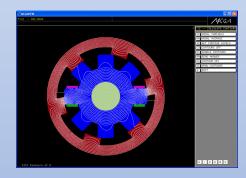
Other Typical DC equipment

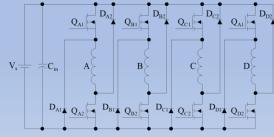
HERCED AND THE PROPERTY OF THE

- Phone
- Vehicles
- Energy Storage
- Renewables
- Motor

Electric Vehicles

Phone


ED limbring


LED lighting

Battery and energy storage

Power Electronics Research

Estimated Power Loss & Efficiency Improvement with DC Distribution in a Building

Power the future

1 OWEI THE INTE				. GIT
Apparatus / System	Typical Load (kW)	AC System (Before DC)	DC System (After DC)	Power Loss Saving (kW)
IT Equipment / Servers	100 kW	SMPS: 90% Efficient Loss: 11.1 kW	DC-DC Converter: 96% Efficient Loss: 4.2 kW	6.9 kW
LED Lighting	50 kW	AC-DC Driver: 88% Efficient Loss: 6.8 kW	DC-DC Driver: 95% Efficient Loss: 2.6 kW	4.2 kW
Variable Frequency Drives (HVAC, Elevators)	150 kW	AC Rectifier + Inverter: 94% Efficient Loss: 9.6 kW	DC-AC Inverter only: 97% Efficient Loss: 4.6 kW	5.0 kW
Audio/Video Equipment	10 kW	Internal AC-DC: 85% Efficient Loss: 1.8 kW	DC-DC Converter: 94% Efficient Loss: 0.6 kW	1.2 kW
EV Charging Stations	100 kW	AC-DC Converter: 93% Efficient Loss: 7.5 kW	Direct DC Charging Loss: ~1.0 kW (connectors/wiring)	6.5 kW
Building Control Systems	5 kW	Various PSUs: 85% Efficient Loss: Pogr Represent Center	DC-DC Converters: 93% Efficient er Loss: 0.4 kW	0.5 kW

Estimated Power Loss & Efficiency Improvement with DC Distribution in a Building

Apparatus / System	Typical Load (kW)	AC System (Before DC)	DC System (After DC)	Power Loss Saving
Subtotal: Apparatus Losses	415 kW	Total Loss: ~37.7 kW	Total Loss: ~13.4 kW	~24.3 kW
Building Power Distribution	415 kW	Losses: • I²R Losses • Transformer Loss (~2%) • Power Factor Penalty (~1-2% effective loss) Total Est. Loss: ~20.8 kW	Losses: • I²R Losses (Lower for same power) • No Transformer Loss • No Power Factor Loss Total Est. Loss: ~12.5 kW	8.3 kW
GRAND TOTAL	415 kW	Total System Loss: ~58.5 kW Overall System Efficiency: ~85.9%	Total System Loss: ~25.9 kW Overall System Efficiency: ~93.8%	~32.6 kW

What has been improved: 7.9%

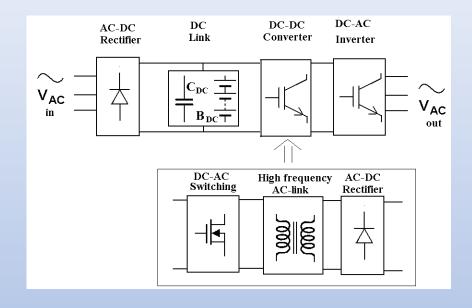
- Apparatus saving:
 - In an AC system: Grid AC -> Building AC -> (AC-DC Rectifier inside device) -> Device's Internal DC.
 - In a DC system: Grid DC-> Building DC -> Device's Internal DC.

Distribution-Level Savings

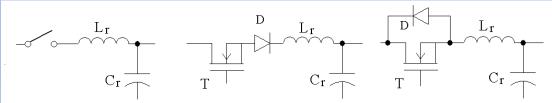
- Elimination of Power Factor (PF) Correction Losses
- Elimination of Harmonic Distortion Losses
- Reduced I²R Losse
- Elimination of Distribution Transformer Losses

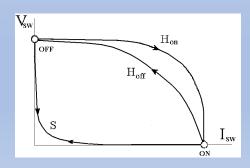
Projected Power Loss & Efficiency Improvement with City-Scale DC Distribution

System Component	Scale (MW)	AC System (Before DC)	DC System (After DC)	Power Loss Saving (MW)
End-Use Apparatus (Buildings, Industry, EV Fleets)	800 MW	Efficiency: ~86% Total Loss: ~112 MW	Efficiency: ~94% Total Loss: ~48 MW	64 MW
Grid-Scale Energy Storage	200 MW (Capacity)	Round-Trip Efficiency: ~88% (AC-DC->Battery- >DC-AC) Loss per Cycle: ~24 MW	Round-Trip Efficiency: ~97% (DC->Battery->DC) Loss per Cycle: ~6 MW	18 MW
Renewable Generation Integration (Solar Farms)	300 MW (Nameplate)	Inverter Efficiency: ~98% Loss: ~6 MW	DC-DC Boost Converter: ~99% Loss: ~3 MW	3 MW


Power the future

Wer the lattice				<u></u>
System Component	Scale (MW)	AC System (Before DC)	DC System (After DC)	Power Loss Saving (MW)
City Power Distribution (MV/HV Lines & Substations)	1,000 MW (Transmitted)	Losses: ~5% (50 MW) • I²R Losses • Transformer Losses • Reactive Power & PF Correction Losses • Skin Effect Losses	Losses: ~2.5% (25 MW) • I²R Losses (Lower current for same power) • Fewer Conversion Stages • No Reactive Power / PF Issues • No Skin Effect	25 MW
Voltage Support & Stability	1-10 MW	Losses: ~1% (10 MW) Requires massive capacitor banks, static VAR compensators (SVCs.etc)	Losses: ~0.1% (1 MW) Voltage is maintained electronically by converters. No need for reactive power compensation. The concept does not exist in a DC grid.	9 MW
GRAND TOTAL (City Scale)	1,000 MW (Peak Load)	Total System Loss: ~202 MW Overall System Efficiency: ~79.8%	Total System Loss: ~83 MW Overall System Efficiency: ~91.7% Imp	~119 MW proved: 11.9%


The technology



 We use high frequency DC-DC power conversion for all types of voltage conversion to replace the conventional AC-AC transformer

• Install power breaker with zero-current switching:

Final remarks

- In the next 10-20 years, the market will be dominated by electric vehicles, robots and data centers.
- No need to worry about the frequency, phase angle when adding DC sources and DC loads as in AC system
- No power factor issues
- No electrocution we use low voltage 20V layer
- Reduce materials and enhance efficiency
- New standard, new operation and new era of power for the future
- No need to worry about the frequency, phase angle when adding DC sources and DC loads as in AC system
- No power factor issues

DC Power Distribution

